Coordination chemistry of organometallic polydentate ligand. Reactive chemistry of the tridentate ligand trans-Fe(Ph₂PQu-P)₂-(CO)₃ [Ph₂PQu = 2-diphenyl-phosphino-4-methylquinoline] and molecular structure of [Fe(CO)₃(μ -Ph₂PQu)₂HgI]⁺[HgI₃]⁻

XU, Feng-Bo*(徐凤波) SUN, Li-Juan(孙丽娟) XUAN, Zhen-Ai(玄镇爱) ZHANG, Wei-Dong(张卫东) CHENG, Hui(程晖) ZHANG, Zheng-Zhi*(张正之) Elemento-Organic Chemistry Laboratory, Nankai University, Tianjin 300071, China

Reaction of a new type of bidentate ligand PhPQu [PhPQu = 2-diphenylphosphino-4-methylquinoline] with Fe(CO)₅ in butanol gave trans-Fe(PhPQu-P)(CO)₃ (1). Compound 1, which can act as a neutral tridentate organometallic ligand, was reacted with I B, I B metal compounds and a rhodium complex to give six binuclear complexes with Fe—M bonds, Fe(CO)₃(μ -Ph₂PQu)MX_n(2—7) [M = Zn(I), Cd(I), Hg(I), Cu(I), Ag(I), Rh(I)], and an ion-pair complex [Fe(CO)₃(μ -Ph₂PQu)₂HgI][HgI₃] (8). The structure of 8 was determined by X-ray crystallography. Complex 8 crystallizes in the space group P-1 with a = 1.0758(3), b = 1.6210(4), c = 1.7155(4) nm; $\alpha = 75.60(2)$, $\beta = 71.81(2)$, $\gamma = 81.78(2)^{\circ}$ and Z = 2 and its structure was refined to give agreement factors of R = 0.050 and $R_w = 0.057$. The Fe—Hg bond distance is 0.2536 nm.

Keywords 2-Diphenylphosphino-4-methylquinoline, *trans*-Fe (PhPQu-P)(CO)₃, neutral tridentate organometallic ligand, I B and II B metal compounds, rhodium complex

Introduction

Some neutral organometallic complexes can act as Lewis bases, but the formation of donor-acceptor bonds between this kind of complex and Lewis acidic metal compounds has not been recognized until the 1970s. ^{1,2} Nowell firstly confirmed the presence of a Co→Hg bond in CpCo(CO)₂·HgCl₂ by X-ray crystallography. ³ Then a series of investigations were concentrated on this area.

For instance, in the 1980s, Pomeroy and co-workers systematically investigated the reaction of neutral metal carbonyl complexes as metal ligands, and some binuclear complexes containing donor-acceptor bonds were obtained. 4 Recently, we have shown that trans-M (Ph2- $Ppy-P_2(CO)_3$ [M = Fe, Ru; $Ph_2Ppy = 2$ -(diphenylphosphino) pyridine] can act as a neutral organometallic tridentate ligand in reactions with many main group and transition metal compounds to give binuclear complexes with M→M bonds. Moreover, it has also been found that these binuclear complexes possess very interesting catalytic behavior. 5 In order to inspect the effect of different ligants on their reactivities and structures of the products here we report a new neutral organometallic tridentate ligand, trans-Fe(Ph₂PQu)₂(CO)₃ [Ph₂PQu = 2-diphenylphosphino-4-methyl-quinoline], and its reactivity.

Experimental

All reactions were performed under a nitrogen atmosphere with the use of standard Schlenk techniques. Solvents were purified by standard methods, and 2-chloro-4-methyl-quinoline⁶ and $[RhCl(CO)_2]_2^7$ were prepared by literature methods.

Infrared spectra were recorded on a WFD-14 spectrometer as KBr discs. The $^{31}P\{^1H\}$ NMR spectra were

^{*} Received November 30, 1999; accepted March 31, 2000.

Project supported by the National Natural Science Foundation of China (No. 29672078).

Corresponding author's Email; zzzhang@public1.tpt.tj.cn

recorded on a JEOL FX-90Q spectrometer at 36.19 MHz using 85% H_3PO_4 as external standard and CDCl $_3$ as solvent. FD-MS spectra were acquired with a Hitachi M-80 spectrometer.

Preparation 2-diphenylphosphino-4-methyl quinoline With stirring, a solution of 2-chloro-4methylquinoline (8.9 g, 0.05 mol) in tetrahydrofuran (20 mL) was added slowly to a solution of Ph₂PLi (0.1 mol) in tetrahydrofuran (80 mL) at 0° C. The resulting mixture was stirred for 3 h at room temperature, and methanol (15 mL) was added to give a pink solution. The solvent was then removed and the residue was washed with dichloromethane. After dichloromethane was removed by evaporation, a pale-yellow oily residue remained. To the residue methanol (15 mL) was added and a white crystalline solid appeared after cooling at 0°C overnight. The solid was collected by filtration and washed with methanol. Yield: 24.7 g (79.1%). mp: 100—102°C. ${}^{31}P{}^{1}H{}^{1}NMR{}_{1}=3.23.$ Anal. $C_{22}H_{18}=$ NP. Calcd.: C, 80.72; H, 5.50; N, 4.28. Found: C, 80.81; H, 5.76; N, 4.22.

Preparation of trans-Fe (CO)₃ (Ph₂PQu)₂, 1
To an *n*-butanol solution (20 mL) of sodium hydroxide (0. 14 g, 3.5 mmol), Fe (CO)₅ (0.33 mL, 2.5 mmol) was added. The mixture was stirred for 0.5 h, and 2-diphenylphosphino-4-methylquinoline (1.25 g, 4 mmol) was added. After being refluxed for 2.5 h, the mixture was cooled to room temperature, upon which a large amount of yellow precipitate was formed. The precipitate was collected by filtration, washed with methanol and recrystallized from CH₂Cl₂/CH₃OH to give an orange solid. Yield: 0.82 g (64.5%). mp 220—224°C. FD-MS, *m/z*: 794(M⁺). Anal. C₄₇ H₃₆ FeN₂O₃P₂. Calcd.: C, 71.03; H, 4.53; N, 3.53. Found: C, 70.87; H, 4.28; N, 3.18.

Preparation of Fe(CO)₃(μ-Ph₂PQu)₂ZnCl₂, **2**A solution of ZnCl₂(0.08 g, 0.6 mmol) in diethyl ether (5 mL) was added to a solution of **1** (0.48 g, 0.6 mmol) in dichloromethane (20 mL). The mixture was stirred for 4 h at room temperature, and a pale-yellow solution was formed. The solvent was removed *in vacuo* and the residue was recrystallized from CH₂Cl₂/Et₂O, and washed with benzene and diethyl ether to give a pale-yellow solid. Yield: 0.22 g (39.4%). mp 140—142°C. Anal. C₄₇H₃₆Cl₂FeN₂O₃P₂Zn. Calcd.: C, 60.64; H, 3.87; N, 3.01. Found: C, 61.02; H, 3.73; N, 3.29.

Preparation of Fe(CO)₃(μ -Ph₂PQu)₂CdCl₂, 3 A finely-ground powder of CdCl₂ (0.3 g, 1.64 mmol) was added to a solution of 1 (0.5 g, 0.63 mmol) in dichloromethane (30 mL). The mixture was stirred for 12 h at room temperature. The unreacted CdCl₂ was filtered off, the solvent was evaporated and the residue was recrystallized from CH₂Cl₂/Et₂O to give a yellow solid. Yield: 0.28 g (45.5%) . mp 162°C (dec.). Anal. C₄₇H₃₆CdCl₂FeN₂O₃P₂. Calcd.: C, 57.71; H, 3.68; N, 2.86. Found: C, 57.37; H, 3.54; N, 2.98.

Preparation of Fe(CO)₃(μ -Ph₂PQu)₂HgCl₂, 4 HgCl₂ (0.1 g, 0.37 mmol) in a 1:2 (V: V) 2-butanone/benzene mixture (15 mL) was added with stirring to a solution of 1 (0.25 g, 0.31 mmol) in the same solvent (20 mL). The color of the solution changed from orange to pale-yellow. After stirring for 45 min at room temperature, the solvent was removed *in vacuo*, and the residue was recrystallized from CH₂Cl₂/Et₂O to give a pale-yellow solid. Yield: 0.28 g (84.8%). mp 176°C (dec.). Anal. C₄₇H₃₆Cl₂FeHgN₂O₃P₂. Calcd.: C, 52.93; H, 3.38; N, 2.63. Found: C, 52.72; H, 3.37; N, 2.64. FD-MS, m/z: 794.

Preparation of Fe(CO)₃(μ -Ph₂PQu)₂CuCl, 5 CuCl (0.1 g, 1 mmol) was added to a stirred solution of 1 (0.5 g, 0.63 mmol) in dichloromethane. The color of the solution changed from orange to dark-red rapidly. After 40 min, the unreacted CuCl was filtered off, the volume of the solution was reduced and diethyl ether was added to give a precipitate, which was recrystallized from CH₂Cl₂/Et₂O to afford a yellow solid. Yield: 0.43 g (76.4%). mp 146°C(dec.). Anal. C₄₇ H₃₆ ClCu-FeN₂O₃P₂. Calcd.: C, 63.16; H, 4.03; N, 3.14. Found: C, 62.73; H, 3.90; N, 2.77.

Preparation of Fe (CO)₃ (μ -Ph₂ PQu)₂AgClO₄, 6 A solution of AgClO₄ (0.1 g, 0.48 mmol) in dichloromethane (10 mL) was added to a solution of 1 (0.4 g, 0.5 mmol) in the same solvent (15 mL). The mixture was stirred for 3 h at room temperature. After removing the solvent in vacuum, the residue was recrystallized twice from CH₂Cl₂/Et₂O to give a pale-yellow solid. Yield: 0.32 g (66.6%). mp 156°C (dec.). Anal. C₄₇H₃₆AgClFeN₂O₇P₂. Calcd.: C, 56.32; H, 3.59; N, 2.80. Found: C, 56.61; H, 4.00; N, 2.77.

Preparation of Fe(CO)₃(μ -Ph₂PQu)₂Rh(CO)Cl, 7 A solution of [Rh(CO)₂Cl]₂ (0.06 g, 0.3 mmol) in dichloromethane (10 mL) was added to a solution of 1 (0.24 g, 0.3 mmol) in dichloromethane (15 mL). The mixture was stirred for 1 h at room temperature, a red solution was formed. The volume of the solution was reduced to 5 mL, diethyl ether was added and a red-brown precipitate appeared. The precipitate was washed with acetone to give a red-brown solid. Yield: 0.16 g (62.0%). mp 177—179 °C. Anal. C_{48} H_{36} - $Cl_2FeN_2O_4P_2Rh$. Calcd.: C, 59.98; H, 3.75; N, 2.92. Found: C, 58.75; H, 4.19; N, 3.25.

From the acetone filtrate, another product, $Rh_2(\mu-CO) Cl_2(\mu-Ph_2PQu)_2$, **9**, was isolated as a red-brown solid. Anal. $C_{45}H_{36}Cl_2N_2OP_2Rh_2$. Calcd.: C, 56.31; H, 3.75; N, 2.92. Found: C, 55.50; H, 4.33; N, 2.70. FD-MS m/z (relative intensity): 956 (M⁺,

100).

Preparation of [Fe (CO)₃ (μ-Ph₂PQu)₂HgI]⁺ [HgI₃]⁻·0.5EtO, **8** The red solid HgI₂(0.59 g, 1 mmol) was added to a stirred solution of **1** (0.40 g, 0.5 mmol) in dichloromethane, and the stirring was continued for 4 h at room temperature. The unreacted HgI₂ was filtered off and the solvent was evaporated. The residue was recrystallized twice from CH₂Cl₂/Et₂O to give an orange crystalline solid. Yield: 0.64 g (73.6%). mp 180° C (dec.). Anal. C₄₉H₄₁FeHg₂I₄N₂O_{3.5}P₂. Calcd.: C, 33.80; H, 2.36; N, 1.60. Found: C, 33.42; H, 2.35; N, 1.49. FD-MS m/z (relative intensity): 1120(40), 794(100).

IR and ³¹P{¹H} NMR data of compounds **1—9** are summarized in Table 1.

Table 1 Spectroscopic data, IR and ³¹P{¹H} NMR, of complexes 1—9

Complex	ν(CO), cm ⁻¹	$^{31}P\{^{1}H\}NMR, \delta(^{2}J(M-P), Hz)$
1 trans-Fe(CO) ₃ (Ph ₂ PQu) ₂	1978w, 1895s, 1864s	84.00
2 Fe(CO) ₃ (Ph ₂ PQu) ₂ ZnCl ₂	2000w, 1985s, 1965s	81.98
$3 \mathrm{Fe}(\mathrm{CO})_{3} (\mathrm{Ph}_{2}\mathrm{PQu})_{2} \mathrm{CdCl}_{2}$	2000w, 1966s, 1942s	84.90
4 Fe(CO) ₃ (Ph ₂ PQu) ₂ HgCl ₂	2000w, 1985s, 1962s	72.29
		$(^2J(Hg-P), 228.90)$
5 Fe(CO) ₃ (Ph ₂ PQu) ₂ CuCl	1985m, 1910s, sh, 1885s	87.34
6 Fe(CO) ₃ (Ph ₂ PQu) ₂ AgClO ₄	1988m, 1925s, 1900s	85.34
$7 \text{ Fe}(CO)_3(Ph_2PQu)_2Rh(CO)Cl$	2050m, 1995s, 1990s, 1980s	32.64
		$(^2J(Rh-P), 131.7)$
8 [$Fe(CO)_3(Ph_2PQu)_2HgI$] + [HgI_3]	2040m, 1995s	70.54
		$(^2J(H_{g}-P), 204.65)$
9 Rh ₂ (μ-CO)Cl ₂ (μ-Ph ₂ PQu) ₂	1810s	40.23°

 $^{^{}a}$ $^{1}J(\text{Rh-P}) = 142.74 \text{ Hz}$; $^{1}J(\text{Rh-Rh}) = 13.84 \text{ Hz}$; $^{2}J(\text{Rh-P}) = 9.88 \text{ Hz}$; $^{3}J(\text{P-P}) = 19.2 \text{ Hz}$.

X-ray analysis of complex 8.0.5Et₂O Crystals of 8 · 0.5 Et₂O suitable for X-ray crystallography were grown from CH2Cl2/Et2O. A pale-yellow crystal with a suitable size $(0.3 \times 0.2 \times 0.3 \text{ mm})$ was used to collect 7907 independent reflections on an Enraf-Nonius CAD4 Diffractometer with Mo-Ka graphite monochromated radiation ($\lambda = 0.071073$ nm) in the range $2 < \theta < 23^{\circ}$. The measurements were carried out at room temperature (23 $\pm 1^{\circ}$ C) by the ω -2 θ scan technique. 3816 reflections with $I \ge 3\sigma(I)$ were considered to be observed and used to the structure analysis. Loreutz-polarization corrections and an empirical absorption correction were applied to the data. The structure was solved by direct methods (MULTAN82). The positions of the Hg, Fe and I atoms were found from an E-map. The coordinates of the nonhydrogen atoms were obtained through several difference-Fourier syntheses. The atomic coordinates and anisotropic thermal parameters of the non-hydrogen atoms were refined using a full-matrix least-squares procedure. The final unweighted and weighted agreement factors were R=0.050 and $R_{\omega}=0.057$. The highest peak in the final difference Fourier map was of height 8.8 e/nm. All calculations were performed on a PDP-11/44 computer with the program pactage SDP-PLUS.

Results and discussion

Synthetic studies

The compound trans-Fe(CO)₃(Ph₂PQu)₂, 1, was

synthesized by the previously-described method for the preparation of compounds of the type *trans*-Fe (CO)₃-(phosphine)₂.⁸

Eq. 1 and 2 illustrate the synthesis of the title compounds, the complexes $Fe(CO)_3(\mu-Ph_2PQu)_2MX_n$ [MX_n = ZnCl₂, CdCl₂, HgCl₂, CuCl, AgClO₄, Rh-(CO)Cl], 2—7, and the complex [Fe(CO)₃($\mu-Ph_2PQu)_2HgI$] + [HgI₃] -, 8.

All complexes except 5 are air-stable solids. 5 decomposes gradually in air.

Reaction of 1 with ZnCl₂ or CdCl₂ was difficult, due to the contamination of the product 2 or 3 by the starting material 1. The following equilibrium may be present in these reactions (Eq. 3), because the carbonyl stretching region of 2 and 3 in dichloromethane solution contain peaks at 1864 and 1895 cm⁻¹, suggesting the presence of the starting material, 1. Further purification of 2 and 3 was therefore performed by washing the products with large quantities of benzene to remove the more soluble 1.

$$F_{e}(CO)_{3} (\mu - Ph_{2}PQu)_{2} (2 \text{ or } 3) \Longrightarrow$$

$$F_{e}(CO)_{3} (Ph_{2}PQu)_{2} (1) + MCl_{2}$$
(3)

Reactions of 1 with HgX_2 (X = Cl, I) were easily carried out in solution, but the constitutions of the products are different. The reaction of 1 with $HgCl_2$ gave only a 1:1 adduct. Different ratios of 1: $HgCl_2$ (2:1, 1:1, 1:2, or 1:3) yielded the same 1:1 complexes. However,

for HgI_2 , only 1:2 adduct was isolated even though different ratios of reactants were used. The reactivities of 1 above mentioned differed from those of $Fe(CO)_3$ (Ph-Ppy)₂. ^{5b} Particularly, the reaction of the latter with HgI_2 afforded a non-ion pair complex $Fe(CO)_3(\mu\text{-Ph-Ppy})_2HgI_2$. ^{5b}

Treatment of 1 with $[Rh(CO)_2Cl]_2$ in dichloromethane solution, followed by precipitation with diethyl ether, yielded a red-brown solid. The solid was washed with acetone and the desired product Fe $(CO)_3$ (μ -Ph₂PQu)₂Rh(CO)Cl (7) was obtained. Another red-brown solid was isolated out from acetone solution, which was identified as $Rh_2(\mu$ -CO) $(\mu$ -Ph₂PQu)₂Cl₂, 9, by 31 P 1 H 1 NMR spectroscopy and elemental analysis.

Spectroscopic properties

Complex 1 exhibits three infrared carbonyl stretching bands at 1978, 1895, and 1864 cm⁻¹, comparable with those observed in the known complexes *trans*-Fe(CO)₃(PR₃)₂. This suggests that the molecule of 1 have a trigonal bipyramidal coordination about the iron atom with the Ph₂PQu ligands at the axial positions.

For the complexes 2—8, the carbonyl stretching frequencies are about 20—130 cm⁻¹ higher than those observed in the starting complex 1, consistent with both a change in stereochemistry and a decrease in the electron density on the iron atom in complexes 2—8, in which the iron atom is bonded to a second metal atom, M, the iron atom donates electrons to M which has a high oxidation state, causing the electron density on the iron atom to decrease. Thus the σ -donating ability of the carbonyl ligands to the iron atom increases, while the back-donating ability of the d π electrons of the iron atom to the empty $2p\pi^*$ orbitals on the carbonyl ligands decreases. These two factors are responsible for the higher carbonyl absorption frequencies in these binuclear complexes.

The formation of a donor-acceptor bond between the iron atom and the second metal atom M in the binuclear complexes 2—8 also leads to a configurational rearrangement from trigonal bipyramid to octahedron, consistent with the fact that large structural re-organizations are expected to occur in most basic transition metal complexes when they interact with an acidic acceptor. But for most main-group bases, only small structural reorganizations

are found. 10

Interestingly, the IR spectra of the Fe/Hg complexes 4 and 8 are distinctly different, the carbonyl absorption frequencies of 4 being lower than those of 8. The known complexes L₂(CO)₃Fe · nHgX₂^{11,12} (L = phosphine, phosphite; X = Cl, Br, I) have two types of structures: (a) Fe→HgX₂ and (b) [Fe-Hg-X] + X or [Fe-Hg-X] + [HgX] . For compounds with the same ligand L, the former (a) is expected to have a lower conductivity and lower carbonyl absorption frequencies than the latter (b). Thus, compound 4, which has much lower carbonyl stretching frequencies, is expected to have the structure Fe→HgCl₂, while 8 should have the structure [Fe-Hg-I] + [HgI₃]. The crystallographic study of 8 has confirmed these assignments.

The 31 P $\{^{1}$ H $\}$ NMR spectra of 2—8 (except 7) show a singlet, suggesting that the phosphorus atoms have identical chemical environments. For the two mercury derivatives, the observed ^{2}J (P-Hg) values of 228.90 and 204.65 Hz are comparable with those in known FeHg complexes. 13,14 The spectrum of complex 7 shows a doublet with identical intensity. ^{2}J (Rh-P) is 131.7 Hz, indicating the existence of a Fe—Rh bond.

Molecular structure of complex 8

Complex 8 is an ion-pair complex and consists of two parts: a positive ion (A) and a negative ion (B), plus one-half of a diethyl ether solvate molecule. The experimental data of the X-ray diffraction study are given in Table 2, while selected bond distances and angles are listed in Table 3.

Fig. 1 gives a PLUTO projection of $[Fe(CO)_3(\mu-Ph_2PQu)_2HgI]^+(A)$. The iron atom has a distorted octahedral configuration and the mercury atom has a linear coordination which is slightly distorted because of the two weak interactions with the quinoline nitrogens.

The $(CO)_3$ FeHg group is nearly planar, and the atoms of two quinoline rings, C(11)—C(20) and C(41)—C(50), are nearly coplanar. The two phosphorus atoms are *trans* to each other, and the O(2)C(2)-Fe(1)Hg(1) group is linear, nearly bisecting the angle C(1)Fe(1)C(3). Because of the presence of the FeHg bond, the angle C(1)Fe(1)C(3) is increased to 155.6(5)°. The Fe(1)Hg(1)I(1) angle is 159.58 (4)°, deviating significantly from linearity.

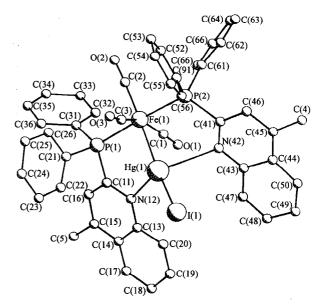


Fig. 1 PLUTO projection of A, the [Fe (CO)₃ (μ -Ph₂PQu)₂HgI]⁺ ion in compound 8.

Table 2 Experimental details of the X-ray diffraction analysis of 8

Table 2 Experimental details of	the X-ray diffraction analysis of 8
formula	C ₄₉ H ₄₁ FeHg ₂ I ₄ N ₂ O _{3.5} P ₂
fw	1739.8
color	yellow
space group	P-1
cryst syst	triclinic
a, nm	1.0758(3)
b, nm	1.6210(4)
c, nm	1.7155(4)
α, deg	75.60(2)
β , deg	71.81(2)
γ , deg	81.78(2)
\boldsymbol{Z}	2
$d_{ m calcd}$, g/cm ³	2.150
cryst. size, mm	$0.3\times0.2\times0.3$
μ , cm ⁻¹	81.59
final R	0.050
final $R_{\rm w}$	0.057
no. of unique reflections	7907
no. of observed reflections	3816

The Fe—Hg distance is 0.2536(1) nm, which is shorter than that in most complexes containing a Fe—Hg bond. The N—Hg distances are 0.2613(7) and 0.2706(6) nm, respectively, comparable to those found in pyridine derivatives. In B, the [HgI₃] anion, the three iodine atoms are arranged in an equilateral triangle, with the mercury atom located at its center. The av-

erage I—Hg distance is 0.2661(2) nm, slightly longer than that in A.

Table 3 Selected bond distances (nm) and angles (deg) in 8

	Bond distances						
Hg(1)-I(1)	0.2609(7)	Fe(1)—C(1)	0.1760(1)				
Hg(1)—Fe(1)	0.2536(1)	Fe(1)—C(2)	0.1800(1)				
Hg(1)-N(12)	0.2613(7)	Fe(1)—C(3)	0.1790(1)				
Hg(1)—N(42)	0.2706(6)	Fe(1)—P(1)	0.2256(3)				
Hg(2)-I(2)	0.2653(2)	Fe(1)—P(2)	0.2270(2)				
Hg(2)—I(3)	0.2658(2)	P(1)—C(11)	0.1820(9)				
Hg(2)—I(4)	0.2673(1)	P(1)—C(21)	0.1810(2)				
C(11)—C(12)	0.1334(9)	P(1)—C(31)	0.1810(2)				
C(13)—N(12)	0.1370(2)	P(2)—C(41)	0.1835(9)				
C(41)—N(42)	0.1300(1)	P(2)—C(51)	0.1846(9)				
C(44)—C(45)	0.1550(1)	P(2)—C(61)	0.1805(8)				
C(43)—N(42)	0.1350(1)	O(1)—C(1)	0.1160(1)				
C(5)—C(15)	0.1510(1)	O(2)C(2)	0.1090(1)				
O(3)—C(3)	0.1140(1)						
	Bond angles						
I(1)-Hg(1)-Fe(1)	159.58(4)	Hg(1)- $Fe(1)$ - $P(1)$	87.07(7)				
I(1)-Hg(1)-N(12)	110.4(2)	Hg(1)- $Fe(1)$ - $P(2)$	89.92(8)				
I(1)-Hg(1)-N(42)	95.1(2)	Hg(1)- $Fe(1)$ - $C(1)$	78.7(4)				
N(12)-Hg(1)-Fe(1)	88.4(2)	Hg(1)- $Fe(1)$ - $C(2)$	174.5(4)				
N(42)-Hg(1)-Fe(1)	84.1(2)	Hg(1)-Fe(1)-C(3)	77.0(3)				
N(12)-Hg(1)-N(42)	114.5(3)	P(1)-Fe(1)-P(2)	175.9(1)				
I(2)-Hg(2)-I(3)	120.20(4)	P(1)-Fe(1)-C(1)	87.1(3)				
I(2)-Hg(2)-I(4)	120.88(4)	P(1)-Fe(1)-C(2)	93.5(3)				
I(3)-Hg(2)-I(4)	118.67(4)	P(1)-Fe(1)-C(3)	91.6(3)				
Fe(1)-P(1)-C(11)	115.4(3)	P(2)-Fe(1)-C(1)	89.6(3)				
Fe(1)-P(1)-C(21)	114.3(3)	P(2)-Fe(1)-C(2)	89.7(3)				
Fe(1)-P(1)-C(31)	114.7(4)	P(2)-Fe(1)-C(3)	90.4(3)				
Fe(1)-P(2)-C(41)	115.7(4)	C(1)-Fe(1)-C(2)	106.9(5)				
Fe(1)-P(2)-C(51)	111.1(3)	C(1)-Fe(1)-C(3)	155.6(5)				
Fe(1)-P(2)-C(61)	115.4(3)	C(2)-Fe(1)- $C(3)$	97.5(6)				
Fe(1)-C(1)-C(1)	177.9(9)	Fe(1)-C(3)-O(3)	172(2)				
Fe(1)-C(2)-C(2)	176(1)	Fe(1)-Fe(41)-N(42)	115.5(7)				

References

- 1. Shriver, D.F., Acc. Chem. Res., 3, 231(1970).
- 2. Kotz, J.C.; Pedrotty, D.C., *Organometal. Chem. Rev.* A, 479(1969).
- Burlitch, J. M.; in "Comprehensive Organometallic Chemistry", Eds. Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Pergamon, New York, 6, 983(1983).
- a) Einstein, F. W. B.; Pomeroy, R. K.; Rushman, P.;
 Willis, A. C., J. Chem. Soc., Chem. Commun, 854 (1983).

- b) Einstein, F.W.B.; Pomeroy, R.K.; Rushman, P.; Willis, A.C., Organometallics, 3, 250(1985).
- c) Einstein, F. W. B.; Jonnings, M. C.; Krentz, R.; Pomeroy, R. K.; Rushman, P.; Willis, A. C., *Inorg. Chem.*, 26, 1341(1987).
- d) Davis, H. B.; Einstein, F. W. B.; Glarma, P. G.; Jones, T.; Pomeroy, R. K.; Rushman, P., Organometallics, 8, 1030(1989).
- a) Zhang, Z.Z.; Xi, H.P.; Zhao, W.J.; Jiang, K.Y.;
 Wang, R.J.; Wang, H.G.; Wu, Y., J. Organomet.
 Chem., 454, 221(1993).

- b) Zhang, Z.Z.; Cheng, H.; Kuang, S.M.; Zhou, Y.
 Q.; Lin, Z.X., J. Organomet. Chem., 516, 1(1996).
 c) Chan, W.H.; Zhang, Z.Z.; Mak, T.C.W.; Che,
- M.C., J. Chem. Soc., Dalton Trans., 803(1998).Org. Syntheses, 24, 28 and 68.
- 7. Mccerety, J.A., Inorg. Synth, 8, 211(1966).
- Keiter, R. L.; Keiter, E. A.; Boecker, C. A.; Miller, D.R., Synth. React. Inorg. Met-Org. Chem., 21, 473 (1991).
- 9. Keiter, R.L.; Keiter, E.A.; Hecker, K.H.; Boecker, C.A., Organometallics, 7, 2466(1988).
- 10. Shriver, D.F., J. Organomet. Chem., 94, 259(1975).

- a) Adams, D. M.; Cook, D. J.; Kemmit, R. D. W., Chem. Commun., 4, 103(1966).
 - b) Adams, D.M.; Cook, D.J.; Kemmit, R.D.W., J. Chem. Soc. A, 1067(1968).
- Demerseman, B.; Bouquet, G.; Bigorgne, M., J. Organomet. Chem., 35, 341(1972).
- Reinhard, G.; Hirle, B.; Schubert, U., J. Organomet. Chem., 427, 173(1972).
- Braunstein, P.; Knor, M.; Tilipicchio, A.; Camellini, M.T., Inorg. Chem., 31, 3685(1992).
- Canty, A.-J.; Raston C.-L.; White, A.-H., Aust. J. Chem., 32, 311(1979).

(E9911167 JIANG, X.H.; LING, J.)